Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alexander Y. Nazarenko ${ }^{\text {a* }}$ and Victor Nemykin ${ }^{\text {b }}$

${ }^{\text {a }}$ Chemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Ave, Buffalo, NY 14222-1095, USA, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Minnesota Duluth, Minnesota 55812-2496, USA

Correspondence e-mail:

nazareay@buffalostate.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.048$
$w R$ factor $=0.140$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Pentaaquadisodium bis(triphenylcyanoborate) (caesignost)

In the crystal structure of the title compound, $\left[\mathrm{Na}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]$ $\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BN}\right)_{2}$, the Na atom is octahedrally coordinated by three water molecules and three N atoms of triphenylcyanoborate anions. The basic structural unit is composed of two octahedra sharing a common face, and this unit is connected by a common edge with the next unit, forming an infinite chain along the crystallographic c axis.

Comment

The triphenylcyanoborate anion (as a sodium salt, 'caesignost') has been used as a gravimetric reagent for the determination of caesium, thallium and large organic cations (Havir, 1961; Bauman, 1968). The goal of this study was the investigation of the crystal structure of the hydrated sodium salt of triphenylcyanoborate, (I), using X-ray structure analysis and vibrational spectroscopy.

(I)

The environment of the sodium ion is a distorted octahedron, with three water molecules ($\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3)$ and one N atom of a cyano group in the equatorial plane, while two cyano groups are axially positioned (Fig. 1 and Table 1). Two such octahedra share a common face defined by water molecule O2 (located on a twofold axis) and atoms N 1 and $\mathrm{N} 1 B$, forming a basic structural unit that is repeated by an inversion operation through a common edge (of two N atoms) generating an infinite chain along the c axis (Figs. 2 and 3). The resulting structure is additionally stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{C}$ (aromatic) hydrogen bonds (Table 2).

The high level of hydration of the sodium salt explains its good solubility in water, which makes it a suitable reagent for caesium precipitation from aqueous solutions.

Experimental

Sodium triphenylcyanoborate was received from Apolda (Germany) and recrystallized from water. Karl Fischer titration results: $\mathrm{H}_{2} \mathrm{O}$ calculated 13.4%; found 13.2%. Two groups of $\mathrm{O}-\mathrm{H}$ vibrations for bridging and terminal water molecules are observed in the IR spectrum.

Received 28 July 2005
Accepted 10 October 2005
Online 19 October 2005

Figure 1
A view of the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The coordination polyhedra around the Na^{I} ions, with hydrogen bonds (dashed lines) between coordinated water molecules. For clarity, the triphenylborate units of the anions have been omitted.

Figure 3
The three-dimensional arrangement of octahedra running along the c axis. Each Na^{I} ion is surrounded by three water molecules (shown in red) and three N atoms (shown in blue) from triphenylcyanoborate anions (omitted for clarity).

Crystal data

$\left[\mathrm{Na}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BN}\right)_{2}$
$M_{r}=672.32$
Monoclinic, C2/c
$a=26.200$ (5) A
$b=14.719$ (3) A
$c=9.5537$ (19) \AA
$\beta=96.12$ (3) ${ }^{\circ}$
$V=3663.4(13) \AA^{3}$
$Z=4$

$D_{x}=1.219 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=30-35^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless $0.50 \times 0.30 \times 0.25 \mathrm{~mm}$

Data collection

Rigaku AFC-7S diffractometer
$R_{\text {int }}=0.03$
ω scans
Absorption correction: ψ scan
(TEXSAN; Molecular Structure
Corporation, 1999)
$T_{\text {min }}=0.95, T_{\text {max }}=0.98$
4207 measured reflections
4206 independent reflections
3134 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 34$
$k=-19 \rightarrow 19$
$l=-12 \rightarrow 12$
3 standard reflections every 150 reflections intensity decay: none

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0735 P)^{2}\right. \\
& +0.6203 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.25 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\text {min }}=-0.18 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0052 \text { (8) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Na}-\mathrm{O} 1$	$2.3118(18)$	$\mathrm{Na}-\mathrm{N} 1$	$2.5455(15)$
$\mathrm{Na}-\mathrm{O} 3$	$2.3488(16)$	$\mathrm{Na}-\mathrm{N} 1^{\mathrm{i}}$	$2.7034(16)$
$\mathrm{Na}-\mathrm{O} 2$	$2.3869(17)$	$\mathrm{Na}-\mathrm{N} 1^{\mathrm{ii}}$	$2.7097(16)$
$\mathrm{O} 1-\mathrm{Na}-\mathrm{O} 3$	$103.87(7)$	$\mathrm{O} 2-\mathrm{Na}-\mathrm{N} 1^{\mathrm{i}}$	$91.46(5)$
$\mathrm{O} 1-\mathrm{Na}-\mathrm{O} 2$	$169.03(6)$	$\mathrm{N} 1-\mathrm{Na}-\mathrm{N} 1^{\mathrm{i}}$	$97.99(5)$
$\mathrm{O} 3-\mathrm{Na}-\mathrm{O} 2$	$85.43(5)$	$\mathrm{O} 1-\mathrm{Na}-\mathrm{N} 1^{\mathrm{ii}}$	$107.39(6)$
$\mathrm{O} 1-\mathrm{Na}-\mathrm{N} 1$	$89.83(7)$	$\mathrm{O} 3-\mathrm{Na}-\mathrm{N} 1^{\mathrm{ii}}$	$83.51(5)$
$\mathrm{O} 3-\mathrm{Na}-\mathrm{N} 1$	$161.17(6)$	$\mathrm{O} 2-\mathrm{Na}-\mathrm{N} 1^{\mathrm{ii}}$	$79.11(5)$
$\mathrm{O} 2-\mathrm{Na}-\mathrm{N} 1$	$82.52(5)$	$\mathrm{N} 1-\mathrm{Na}-\mathrm{N} 1^{\mathrm{ii}}$	$80.05(6)$
$\mathrm{O} 1-\mathrm{Na}-\mathrm{N} 1^{\mathrm{i}}$	$81.79(6)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Na}-\mathrm{N} 1^{\mathrm{ii}}$	$170.53(5)$
$\mathrm{O} 3-\mathrm{Na}-\mathrm{N} 1^{\mathrm{i}}$	$96.73(5)$		
Symmetry codes: $(\mathrm{i})-x+1,-y+1,-z+1 ;$ (ii) $-x+1, y,-z+\frac{1}{2}$.			

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3^{\text {iii }}$	0.85 (2)	2.04 (2)	2.858 (2)	160 (2)
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{C} 16^{\text {ii }}$	0.83 (2)	2.65 (3)	3.352 (3)	143 (2)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {iv }}$	0.82 (2)	2.28 (2)	3.001 (2)	146 (2)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{C} 26^{\text {ii }}$	0.81 (2)	2.37 (2)	3.142 (2)	159 (2)
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{C} 31^{\text {i }}$	0.82 (2)	2.42 (2)	3.214 (2)	161 (2)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1, y,-z+\frac{1}{2}$; (iii) $x,-y+1, z+\frac{1}{2}$, (iv) $x,-y+1, z-\frac{1}{2}$.

All H atoms of phenyl groups were located in a difference map and allowed to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.91-1.02 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Water H atoms were located in a Fourier map and refined with restrained bond lengths $[\mathrm{O}-\mathrm{H}=0.83$ (2) \AA and $\left.U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{O})\right]$.

metal-organic papers

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991)'; cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

The packing diagram given in Fig. 3 was prepared by the program ATOMS (Dowty, 2004) kindly provided by Dr B Perić, Rudjer Boskovic Institute, Zagreb, Croatia.

References

Bauman, A. (1968). Talanta, 15, 185-188
Dowty, E. (2004). ATOMS. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Havir, J. (1961). Collect. Czech. Chem. Commun. 26, 1775-1783.
Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

